

CO-PRODUCTS
CELSA GROUP

TECHNICAL DATA SHEETS

CO-PRODUCTS CONTENT

INTRODUCTION

01

STEEL AGGREGATE (BLACK) - EAFS

02

STEEL AGGREGATE (WHITE) - LFS

03

IRON OXIDE - MILL SCALE

04

ZINC OXIDE - EAFD

05

INTRODUCTION CO-PRODUCTS

CELSA GROUP is not only a steelmaking company dedicated to the steel production. We have become the 1st recycling group in Spain and 2nd in Europe. These premise make us to focus on the coproducts generated during the production of steel in the different business units, and the need to generate added value for them and new added value applications.

At CELSA GROUP we generate close to 1.4 million tons of different coproducts, among which are: Slag from the EAF - electric arc furnace (black) and LF - ladle furnace (white), also known after processing as steel aggregate, mill scale from meltshop, rolling mill, and drawing facilities (iron oxide), steel dust from EAF filters (EAFD) and refractories.

Below, you will find recycled co-products with a low carbon footprint. that are suitable for manufacturing negative carbon cements, sustainable clinker, concretes, counterweights, ferro-alloys or pigments.

Circularity BU

TECHNICAL DATA SHEETS

CO-PRODUCTS

CELSA is already low carbon.

STEEL AGGREGATE (BLACK)

EAFS - ELECTRIC ARC
FURNACE SLAG

DESCRIPTION

Ecological co-product, with high hardness, high specific weight and great resistance to wear. Generated in the steel-making process with Electrical Arc Furnace. It is the main by-product generated on the process of melting steel scrap with electricity to produce steel, with very low CO2 emissions.

APPLICATION

Civil engineering applications, concretes, asphalts and bituminous mixtures. Good physical, chemical and mineralogical properties. Also used as a raw material for Rockwool and Ferro Alloys production.

AVAILABILITY

800.000 TPY

CELSA is already low carbon.

STEEL **AGGREGATE** (BLACK)

EAFS - ELECTRIC ARC FURNACE SLAG

COMPOSITION

FeO	Avg % wt	33,0
CaO	Avg % wt	26,0
SiO2	Avg % wt	15,0
Al2O3	Avg % wt	12,0
MnO	Avg % wt	5,5
MgO	Avg % wt	4,4
Cr2O3	Avg % wt	2,5
P2O5	Avg % wt	0,5

OTHER PROPERTIES

Density (Apparent / Dry)	3,8 / 3,5	UNE-EN 1097-6:2001
Basicity	2,03	(CaO% + MgO%)/SiO2%
Expansivity	0,5	UNE-EN 1744-1:1998
Hardness	-	-
Los Ángeles abrasion test (LA)	> LA15	UNE-EN 1097-2:1999
Polish test (PSV)	> PSV56	UNE-EN 1097-8:2010
Available sizes (mm)	0-5 / 5-11 / 11-25 / 25-50	UNE-EN 933-1:1998
Packaging	In Bulk	-

LFS - LADLE FURNACE SLAG

EWC CODE/LER: **10 02 02**

DESCRIPTION

Co-product generated from the steel slag in the ladle furnace (Secondary refining). It has a high lime content (CaO), SiO2, Al2O3 and MgO. With application in several construction sectors and cement industries. Without any pre-treatment, the material is powdery and fine, which favors its application in several construction sectors and cement industry.

APPLICATION

Clinker production, construction as cement substitute (Low CO2 emissions), carbon negative concrete, Lime substitute, Ph soil amendments.

AVAILABILITY

130.000 TPY

LFS - LADLE FURNACE SLAG

COMPOSITION

FeO	Avg % wt	1,8
CaO	Avg % wt	52,1
SiO2	Avg % wt	26,1
Al2O3	Avg % wt	7,4
MnO	Avg % wt	2,3
MgO	Avg % wt	9,7
Cr2O3	Avg % wt	<0,1
P2O5	Avg % wt	<0,1
TiO2	Avg % wt	<0,5

OTHER PROPERTIES

Density (Apparent / Dry)	2,6	UNE-EN 1097-6:2001
Basicity	2,36	(CaO% + MgO%) / SiO2%
Expansivity	-	UNE-EN 1744-1:1998
Available sizes (mm)	0,063 - 2 mm	UNE-EN 933-1:1998
Packaging	In Bulk	-

LFS - LADLE FURNACE SLAG B - (GRANULATED)

EWC CODE/LER: **10 02 02**

DESCRIPTION

Co-product generated from the steel slag in the ladle furnace (Secondary refining). It has a high lime content (CaO), SiO2, Al2O3 and MgO. With application in several construction sectors and cement industries. This type B slag is less dusty and much more easy to transport than other ladle furnace slags.

APPLICATION

Clinker production, construction as cement substitute (Low CO2 emissions), carbon negative concrete, Lime substitute, Ph soil amendments.

AVAILABILITY

10.000 TPY

LFS - LADLE FURNACE SLAG B - (GRANULATED)

COMPOSITION

Fe2O3	Avg % wt	1,6
CaO	Avg % wt	38,6
SiO2	Avg % wt	39,5
Al2O3	Avg % wt	1,4
MnO	Avg % wt	2,9
MgO	Avg % wt	9,2
Cr2O3	Avg % wt	<0,1
P2O5	Avg % wt	<0,1
TiO2	Avg % wt	<0,5

OTHER PROPERTIES

Density (Apparent / Dry)	2,6	UNE-EN 1097-6:2001
Basicity	1,21	(CαO% + MgO%) / SiO2%
Expansivity	-	UNE-EN 1744-1:1998
Available sizes (mm)	On demand	-
Packaging	In Bulk	-

IRON OXIDE MILL SCALE I

ROLLING MILL

EWC CODE/LER: 10 02 10

DESCRIPTION

Layered and brittle material generated in the surface of billets, slabs, plates, sheets or profiles when they are manufactured during a rolling process. Is mainly composed by iron oxides FeO (Wustite), Fe2O3 (hematite), Fe3O4 (magnetite).

APPLICATION

Iron ore sinter, iron ore pellets, cement clinker, heavy concrete and aggregates, electrodes for alkaline batteries, preparation and uses of catalyst, ferro alloys (FeP, FeMo, FeSi SiMn), phosphate fertilizer, mineral wool, colored glass, oxide pigments, flocculant production, counterweights, magnets, etc.

AVAILABILITY

412

90.000 TPY

IRON OXIDE

MILL SCALE I

ROLLING MILL

COMPOSITION

Total Avg % wt

Fe Total	Avg % wt	71,8	ICP
Fe2O3 (Hematite)	Avg % wt	44,4	ICP
FeO (Wüstite)	Avg % wt	48,2	ICP
SiO2	Avg % wt	0,45	ICP
CαO	Avg % wt	0,17	ICP
Al2O3	Avg % wt	0,11	ICP
Р	Avg % wt	< 0,03	ICP
Zn	Avg % wt	< 0,03	ICP
S	Avg % wt	< 0,03	LECO
Cl	Avg % wt	<0,02	lonic Chromatography

OTHER PROPERTIES

Density	kg/m3	2600	
Moisture	Avg % wt	< 3	Stove
Oils	Avg % wt	< 0,5	CEA 1185

Size distribution: 0,1 - 10 mm

IRON OXIDE MILL SCALE II

WIRE DRAWING MILL SCALE

EWC CODE/LER: **10 01 02**

DESCRIPTION

Layered, fine and brittle material generated in the surface of wire rod in the drawing process. Is mainly composed by iron oxides FeO (Wustite), Fe2O3 (hematite), Fe3O4 (magnetite).

APPLICATION

Iron ore sinter, iron ore pellets, cement clinker, heavy concrete and aggregates, electrodes for alkaline batteries, preparation and uses of catalyst, ferro alloys (FeP, FeMo, FeSi SiMn), phosphate fertilizer, mineral wool, colored glass, oxide pigments, flocculant production, counterweights, magnets, etc.

AVAILABILITY

41:

2000 TPY

CELSA is already low carbon.

IRON OXIDE

MILL SCALE II

WIRE DRAWING MILL SCALE

COMPOSITION

Fe Total	Avg % weight	75
Insoluble	Avg % weight	< 0,5
Mn	ppm / %	3500 / 0,35%
Си	ppm / %	2900 / 0,29%
Ni	ppm / %	580 / 0,058%
Cr	ppm/%	200 / 0,020%
Zn	ppm/%	37 / 0,0037%
С	ppm/%	410 / 0,041%
S	ppm/%	420 / 0,042%

OTHER PROPERTIES

	, 6	
BET	m2/g	0,4
Oils	ppm/%	0
Humidity	ppm/%	< 0,1
		-/~
Fe Met.	Avg % weight	1,5
Fe2O3 (Hematite)	Avg % weight	2,0
FeO (Wüstite)	Avg % weight	44,8
Fe3O4 (Magnetite)	Avg % weight	47,9

Size distribution: 0,1 - 0,6 mm

04

IRON OXIDE MILL SCALE III

MILL SCALE SLUDGES

EWC CODE/LER: 10 02 10

DESCRIPTION

Layered and brittle material generated in the surface of billets, slabs, plates, sheets or profiles when they are manufactured during a wire drawing process. Is mainly composed by iron oxides FeO (Wüstite), Fe2O3 (hematite), Fe3O4 (magnetite). In sludge format as material has been processed and de-oiled in a wat material

APPLICATION

Iron ore sinter, iron ore pellets, cement clinker, heavy concrete and aggregates, electrodes for alkaline batteries, preparation and uses of catalyst, ferro alloys (FeP, FeMo, FeSi SiMn), phosphate fertilizer, mineral wool, colored glass, oxide pigments, flocculant production, counterweights, magnets, etc.

AVAILABILITY

411

50.000 TPY

IRON OXIDE

MILL SCALE III

MILL SCALE SLUDGES

COMPOSITION

JMP 0311101

Fe Total	Avg % wt	>70	ICP
Fe2O3 (Hematite)	Avg % wt	44,4	ICP
FeO (Wüstite)	Avg % wt	48,2	ICP
SiO2	Avg % wt	0,45	ICP
CαO	Avg % wt	0,17	ICP
Al2O3	Avg % wt	0,11	ICP
Р	Avg % wt	< 0,03	ICP
Zn	Avg % wt	< 0,03	ICP
S	Avg % wt	< 0,03	LECO
Cl	Avg % wt	<0,02	lonic Chromatography

OTHER PROPERTIES

Density	kg/m3	2600	
Moisture	Avg % wt	< 6	Stove
Oils	Avg % wt	< 0,5	CEA 1185

Size distribution: 0,1 - 2 mm

ZINC OXIDE EAFD

DUST FROM EAF
ASPIRATION

EWC CODE/LER: 10 02 07

DESCRIPTION

Electric-arc furnace dust (EAFD) is a co-product generated in mini mills during steel production, mainly in the EAF dust filter. It has valuable zinc that can be recovered in WAELZ furnaces.

APPLICATION

Production of enriched zinc oxide that can be further processed for very different applications as pharmaceutical, animal food industry, ceramics and galvanizing.

AVAILABILITY

120.000 TPY

CELSA is already low carbon.

ZINC OXIDE

EAFD

DUST FROM EAF ASPIRATION

COMPOSITION

Zn	Avg % wt	37,8
Fe	Avg % wt	18,8
Са	Avg % wt	4,0
Pb	Avg % wt	1,7
Mn	Avg % wt	1,6
Si	Avg % wt	1,4
Mg	Avg % wt	1,1
K	Avg % wt	1,0
S	Avg % wt	0,6
Al	Avg % wt	0,6

OTHER PROPERTIES

ZnO	Avg % wt	>30
ZnFe ₂ O ₄	Avg % wt	25,3
CaO	Avg % wt	7,5
$Zn_5(OH)_8Cl_2\cdot H_2O$	Avg % wt	18,3
С	Avg % wt	9,9
Cα TiO₃	Avg % wt	7,5
FeO(OH)	Avg % wt	5,0
CaCO₃	Avg % wt	10,0
↑ ↑		

CIRCULARITY BUSINESS UNIT

CO-PRODUCTS

